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Abstract—A new programmable capacitance multiplier 

implementation is presented in this paper. It is based on a 

fairly known architecture, but the proposed circuit employs 

only one linear transconductor (Gm cell).  The 

mathematical analysis of the new capacitance multiplier is 

presented along with simulations performed on a circuit 

implemented in standard 0.18- m CMOS process. Two 

applications are also presented: a triangular waveform 

generator and a fully differential lossy integrator, both with 

emulated capacitances programmable over three octaves. 

Keywords— capacitor multiplier, current mode, 

transconductor, analog integrated circuits 
 

 

1. Introduction 
 

In general, the integration of capacitances 
larger than hundreds of picofarads is not 
feasible/desired in general-purpose integrated 
technologies, due to the large die area they 
require. Using external capacitors is not 
always acceptable, as this implies dedicated 
pins and obviously increases the bill-of-
materials (BoM) for the application. 

Another option is the implementation of a 
circuit that emulates the features of a large 
capacitance while actually employing a 
placed/integrated capacitor many times 
smaller than the emulated value – that is, a 
capacitance multiplier. In this case, it is often 
required to provide means for adjusting or 
programming the capacitance gain factor (G), 
at least in order to compensate for variations 
of the process, supply voltage and temperature 
(PVT). 

Several circuit solutions for implementing 
capacitance multipliers have been reported in 
the open literature. Most of them are based on 
the Miller effect; thus, they can be classified 
as a voltage mode approaches. Their 
performance is usually hindered by signal 
swing limitations since the maximum voltage 
applied to the capacitance is reduced by the 
gain factor, G. Current mode approaches are 
faster and have a wider dynamic range [1].  

The principle of current mode approach is  
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Fig. 1 Current mode approach for capacitor multiplier. 

shown in Fig. 1. It is based on a simple current 
mirror, which senses the current passing 
through the placed capacitor (C) and scales it 
by the current gain, K. This way, the 
equivalent capacitance is seen at the output of 
the current mirror appears G=(K + 1) larger 
than C. However, most circuits reported in 
literature provide a very low-quality factor, Q, 
for the resulting multiplied capacitance, 
mainly due to the relatively large input 
resistance of the current mirror, Rin = 1/gm 
[2]. Other current mode implementations use 
second-generation current conveyors as active 
devices to multiply the capacitance but they do 
not allow a variable capacitance multiplication 
factor [3]. 

A typical solution for a capacitor multiplier 
is the circuit presented in [4]. The circuit 
presented in Fig. 2 a), uses two 
transconductance amplifiers (OTAs) with 
transconductance gains gm1 and gm2. The 
transconductance of OTA2 ca be adjusted by 
means of a control voltage or a bias current. 
One terminal of capacitor C is connected to 
OTA1. OTA1 uses unity gain negative 
feedback and operates as a low-value series 
resistor R1=1/Gm1 connected between the 
remaining capacitor terminal and ground. 
 The equivalent circuit with its series 
resistor R1 is presented in Fig. 2 b). For a 
purely capacitive behavior (Q= ) the value of 
R1 should be zero. In order to achieve a high 
Q, OTA1 should have a large gm while OTA2 
should have a large output resistance. 
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Fig. 2 a) Capacitor multiplier with two transconductor cells; 
b) equivalent circuit [4]. 

 

2.  Proposed circuit 
 

 The proposed capacitance multiplier 
scheme presented in Fig. 3 contains only one 
transconductance core (common Gm core) 
and multiple scaled output stages that 
emulates the two OTAs [5]. The Gm core is 
based on Kwan-Martin transconductor 
topology [6], presented in Fig. 4 and 
optimized for high linearity and accuracy 
whose transconductance is determined by: 

  (1)

where Aii=(W/L)M3/(W/L)M2. 

 The inputs of the two OTAs are connected 
in parallel, for this reason, we can write: 

  (2)

  (3)

  (4)

 If we note the ratio of the two 
transconductors with K=Gm2/Gm1, the 
equivalent input impedance is: 

    (5) 

and the equivalent capacitance is: 

  (6)

 The proposed circuit was implemented in a 

standard 180nm technology. The stand-alone 

capacitor multiplier circuit was simulated for 

a 5pF base capacitor and a 1mS Gm core.  

 The variable output stage was set in order 

to obtain a Gm2/Gm1 ratio of K=1, 3, 7 and 15 

for a Cequivalent=C(1+K) =10pF, 20pF, 40pF 

and 80pF.  Fig. 5 a) presents the simulation  
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Fig. 3 Block diagram of the proposed capacitor multiplier 

with common-core and multiple outputs. 
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Fig. 4 Linear Gm-cell with two outputs based on the Kwan-

Martin Gm-core [6] (shown within the dotted rectangle). 

results of the AC response of the input and 
capacitor impedance for the circuit in which 
the output stage was implemented with active 
cascode, similar to [7]. Table I comprises a 
comparison between the performances of the 
proposed circuit and other works. 
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Fig. 5 AC response of the equivalent input impedance 

(magnitude and phase) for K=1, K=3, K=7, K=15 and 

capacitor impedance, a) with active cascode [7], b) with 

standard, one-level cascode. 
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TABLE I.  PERFORMANCES COMPARISON : PROPOSED 

CAPACITOR MULTIPLIER VERSUS REFERENCES 

 [4] [8] This work 
Placed 

capacitor 
800pF 0.1pF 5pF 

Frequency 

range 

3 decades* 

1KHz-1MHz 

2 decades* 
10KHz-

1MHz 

3 decades** 

1.9KHz-4.65MHz 

Control 
Variable 
current 

Variable 
voltage 

Programmable 
current 

Process discrete 180nm 180nm 

* Based only on magnitude response, phase error not 

known; ** Phase error <10o 

The active cascode is a closed loop structure 
that employs a gain stage to drive the gate of 
the cascode. It increases significantly the 
equivalent output impedance. For comparison, 
Fig. 5  b) presents the simulation results for the 
circuit with standard cascode implementation.  

 

3. Applications for capacitor multiplier 
 

A.  Triangle-wave generator with adjustable 

frequency  
 

For large-signal application of the 

capacitor multiplier, a triangle waveform 

generator (oscillator) was implemented using 

the proposed schematic from above. The block 

diagram of the oscillator is shown in Fig. 6. 
The oscillating frequency is given by: 

  (7)

  (8)

The oscillator was designed for a 7.5pF 

placed capacitor, and 200mVpp amplitude. 

The charge/discharge current was set top 

15 A, according to equation (7). 

Table II summarizes the results for the 

oscillating frequency of the proposed triangle 

waveform generator. 

Fig. 7 illustrates the triangle-wave voltage 

across the capacitor for K=1 and K=15 which 

corresponds to the min and max frequency. 
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Fig. 6 Block diagram of the triangle waveform generator. 

 

 

TABLE II.  OSCILLATING FREQUENCY FOR SEVERAL VALUES 

OF THE K=GM2/GM1 RATIO - SIMULATION RESULTS 

K ratio 
Parameter 

Cequivalent fosc simulated fosc error 

1 15 pF 2.2 MHz 12% 

3 30 pF 1.16 MHz 7% 

7 60 pF 600 KHz 4% 

15 120 pF 305 KHz 2.5% 
 

 
Fig. 7 Oscillator output, Vcap, for K=1 and K=15. 

B. Fully differential lossy integrator with 

programmable pole frequency 

 

For small-signal application of the 

capacitor multiplier, a fully differential, 

adjustable bandwidth, lossy integrator (Gm-

C) was implemented using the proposed 

schematic with common-core and multiple 

output stages. The integrator block diagram is 

illustrated in Fig. 8 a). 

For calculating the integrator bandwidth (-

3dB cut-off frequency) the equivalent circuit 

depicted in Fig. 8 b) was used, where:  

  (9) 

The transfer function of the circuit is: 

 (10)
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Fig. 8 a) Fully differential Gm-C integrator with capacitor 

multiplier; b) Equivalent circuit of the integrator. 
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Fig. 9 presents the AC magnitude 

characteristics of the integrator for four values 

of the current gain K, while in Fig. 10 the 

transient response of the integrator for a 

40mVpp sine voltage 50KHz and 200KHz is 

presented. Table III summarizes the results for 

the -3dB cut-off frequency of the proposed 

integrator.  

 
Fig. 9 AC response (magnitude) of the Gm-C integrator for 

K=1, K=3, K=7 and K=15. 

 
Fig. 10 Integrator transient output voltage for 50KHz input 

sine-voltage and output voltage for 200KHz input sine-

voltage. 

TABLE III.  INTEGRATOR BANDWIDTH SIM RESULTS FOR 

DIFFERENT K=GM2/GM1 RATIO 

K ratio 
Parameter 

Cequivalent f-3dB simulated f-3dB error 

1 50 pF 478 KHz 0.4% 

3 100 pF 266 KHz 0.3% 

7 200 pF 143 KHz 0.2% 

15 400 pF 75 KHz 0.1% 

 

5. Conclusions 
 

 A novel capacitance multiplier scheme that 
comprises one transconductor cell was 
presented in this work that comprises a 
programmable gain factor of 2, 4, 8 and 16. To 
validate the concept we implemented the 

proposed schematic in a standard 180nm 
technology and presented the simulation 
results. First, we analyzed the equivalent 
impedance provided by the circuit and found 
that it emulates a multiplied capacitor over a 
wide frequency range: the phase error remains 
below 10 degrees for three decades, from a 
few kHz to a few MHz. Next, the resulting 
capacitor was used to implement a triangle-
wave generator with adjustable frequency.  
Finally, a fully differential version of the 
multiplier was employed to implement a 
programmable lossy integrator. For both 
applications the simulation results were very 
close to expected values, further validating 
this novel circuit. 
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