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Abstract—Most sensitivity analysis methods from literature 

impose specific experiment plans (design-of-experiments). 

Moreover, the size of the experiment plan, which is in 

conjunction with the number of system evaluations, increases 

with the number of factors that may affect the systems’ behavior. 

This paper introduces a gradient-based global sensitivity analysis 

method which overcomes these limitations. First, its performance 

is compared against six sensitivity analysis methods on sets of 

polynomial test functions. The comparison is carried out by 

means of the number of system evaluations implied and the 

reported factor ranking list. The proposed method proved to 

have comparable accuracy to the best of the six known methods- 

the EFAST method- with the advantage of a lower number of 

system evaluations. These two methods are further applied on an 

electronic system, an E-Bike application. In this case, the 

proposed method employs the verification plan of the EFAST 

method, as well as a standard Monte Carlo experiment plan with 

about one third of the system evaluations of the EFAST. Even 

with a much lower number of system evaluations, the proposed 

method yields the same result as the EFAST method in terms of 

the factor ranking list. 

Keywords—Sensitivity analysis, variance decomposition, local 

regression 

I.  INTRODUCTION 

Verification of modern electronic systems is hard pressed to 
keep pace with the fast increase of their complexity and the 
resulting even faster increasing number of factors which can 
influence their behavior. The responses of such complex 
systems may be influenced by hundreds of input parameters, 
called factors. These factors include design and process 
parameters, configuration settings and operating conditions 
such as supply voltage and temperature. In this context, system 
responses include the noise level, the power consumption, 
frequency characteristics, etc.  

The verification of such complex systems is time-
consuming and costly and a solution to shorten it is to reduce 
the analysis to a smaller number of factors. Although there may 
be hundreds of factors with potential impact on the system 
response(s), the parsimony principle states that only a few of 
them are responsible for most of the effect in a response. 

As the relationship between factors and responses is often 
unknown or uncertain due to the complexity, one may apply 
Sensitivity Analysis (SA) [1-2] to determine the effect of a 
given factor on the response and determine the subset of factors 

most influential on the response. This way, one can concentrate 
further analysis only on these few most important factors, 
significantly reducing the verification time and analysis 
complexity. Thus, SA is usually the first phase of an 
experimental study on a system. 

The choice of the SA method should be done depending on 
the types of factor-response relationships involved and the 
execution cost implied, especially for complex systems which 
include non-linear effects. 

In [3], the SA methods are categorized into three groups: 
local SA methods, global SA methods and screening methods. 
Local methods are the ones in which the variation of the 
response is observed when only one factor is varied and the rest 
are held constant. Such examples are the One-Factor-at-a-Time 
(OAT) method [4] and the partial derivatives [5]. Note that for 
local SA, the factor-response relationship is assumed to be 
linear and the correlation between parameters is neglected.  

In the global SA approaches, the response is observed when 
all factors are varied simultaneously [6-7]. The most common 
statistical procedures for global SA are the Analysis of 
Variance (ANOVA) [8] and the standardized regression 
coefficient (SRC) method [9]. However, these become very 
complex for a large number of factors or are valid only for 
linear factor-response relationships. 

The statistical linear regression [10] is another global SA 
technique which aims to estimate the factor-response 
relationship, but the accuracy of the results is conditioned by 
the fitness of the model. Another direction for SA is the 
variance-based methods [11-12]. However, they impose 
particular experiment plans and the number of system 
evaluations increases with the number of factors, which can 
lead to high execution costs in terms of the computational time 
required for the system evaluations. The screening methods are 
recommended for systems which imply a high computational 
cost [11]. 

SA methods were applied in several domains such as 
building energy models and environmental modeling [13-15]. 
However, SA has not been often applied to electronic systems, 
although their increased complexity would warrant its use. 

The paper proposes a gradient-based global SA method 
developed using the concept of local regression [10] for 
cumulating the local effects in order to unveil global 
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sensitivities. First, it is applied on second-order polynomial 
functions and its accuracy of determining the most important 
factors is compared to six SA methods from literature: three 
variance-based methods [11-12], the Morris OAT [12] and two 
entropy-based methods proposed by the authors in [16]. Then, 
the proposed method is applied on an E-bike application and its 
ranking of most important factors is compared to the ranking of 
the well-known EFAST SA method. In each case, the number 
of system evaluations involved is also reviewed. 

The paper is organized as follows: Section II summarizes 
the related work, followed by the description of the proposed 
method in Section III. Section IV presents a comparison of the 
proposed method to several SA methods on synthetic test 
functions. The SA results on an electronic application are 
presented in Section V. Conclusions are drawn in Section VI. 

II. RELATED WORK 

Different SA approaches are applicable on different types 
of models. A common and simple first step is to inspect the 
scatter plots [9] and qualitatively determine nonlinearities, non-
monotonicities and correlations between the factors and 
responses. For linear models, methods such as the Partial 
Correlation Coefficients are suggested [9]. In the case of non-
linear but monotonic models, the Partial Rank Correlation 
Coefficient and Standardized Rank Regression Coefficients are 
a suitable choice [9]. For non-linear and non-monotonic 
models, the variance-based methods should be used, while for 
systems which imply a high computational cost, screening 
methods such as the Morris OAT [11] are recommended. 

A. The variance-based methods 

The variance-based SA methods [11-12] aim to estimate 
the amount of variance added by an input factor Xi to the 
unconditional output variance V(Y). Furthermore, V(Y) can be 
decomposed into conditional variances as in (1): 

( ) ( [ | ]) [ ( | )]i iV Y V E Y X E V Y X   (1) 

where E(V[Y|Xi]) is the expectation value over the whole 
interval of variation of the input factor Xi, i=1, ..., K, where K 
denotes the total number of factors and V(E[Y|Xi]) is the 
variance of the conditional expectation, which is simply 
denoted Vi and is often called ‘main effect’, i.e. the sensitivity 
of Y to Xi. Then, the first order sensitivity index Si is: 

 |
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  (2) 

The first order sensitivity index measures only the main 
effect of a factor on the response and it does not take into 
account the interactions between input factors. Note that two 
factors are considered to be in interaction if their total effect on 
the response is not the sum of their first order effects. In order 
to determine the higher order effects (interactions and 
nonlinear effects), the so-called total order effect indices need 
to be computed: 
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(3) 

where X~i denotes all factors except Xi. 

Examples of these methods are: Fourier Amplitude 
Sensitivity Test (FAST), Extended Fourier Amplitude 
Sensitivity Test (EFAST) and Sobol’ indices [11-12]. 

Note that the number of system evaluations required by the 
variance-based methods to perform the SA is increasing as the 
number of factors increases. Moreover, each method imposes a 
specific experiment plan. Providing accurate conclusions with 
a minimum number of model evaluations is not a simple task, 
especially for complex systems. 

B. The Morris OAT method 

This approach aims to assess the impact on the output when 
changing one factor value at a time [1], [11]. The theory on 
how to produce the Morris mean μ and its related standard 
deviation σ for each factor can be found in [1]. 

A high mean indicates a factor with an important total 
effect and a high standard deviation means an interaction with 
other factors or non-linear effects on the output. 

C. The entropy-based methods 

The authors proposed in [16] two methods based on the 
measure of statistical entropy: the Entropy Simple method, 
which determines main effects of factors and the Entropy Pair 
method, which is capable of determining also interactions 
between factors. 

The core idea of these methods lies in transforming the 
information provided by scatter plots into quantifiable 
measures of the impact of the factor on the response by using 
the statistical entropy [17]. Recall that a random factor-
response distribution reveals a low impact of the factor on the 
response (thus high entropy), while the order of the 
distribution, i.e. a pattern or deformation from randomness 
reveals an important impact. 

The advantage of the entropy-based methods is that they do 
not impose a specific experiment plan for the SA. Also, the 
number of system evaluations does not increase with the 
number of factors. Moreover, there is no limitation about the 
orthogonality of the factors. 

III. THE PROPOSED METHOD 

The core idea of the method is to derive the global SA 
result by cumulating results yielded by local SAs which 
employ linear regression [10] on data subsets. 

The factor-response function can be seen as a hyper-surface 
in the multidimensional space, usually with a very 
sophisticated shape. This multidimensional space can be very 
difficult to estimate, but for a small region of the factor space, 
the surface can be estimated with a plane. The orientation of 
the plane, tangent to the surface, is given by the gradient of the 
surface in that region. The orientation of the gradient provides 
information about the factors that contribute to the variation of 
the response. 

For simplification, let us illustrate the idea by an example 
as in Fig. 1, where X represents a factor and Y the response. 
The classical regression approach (based on low-order 
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polynomials) is usually valid for regions where the response 
does not vary too much. However, for complex systems, the 
response may depend non-monotonically on the factors, 
meaning that higher order effects may remain unrevealed. 

In Fig. 1 the dots represent the measured data, while the 
real response-factor relationship is illustrated with the 
continuous line. Using linear regression, one can estimate a line 
that passes through the dots and whose inclination provides 
information about the impact of the factor on the response. 
Using this classical regression approach, one would conclude 
that the factor has little impact, although it actually has a 
greater one. 

Using local regression, one can estimate sophisticated 
effects, because for small variations of the variable, any 
function can be approximated by a line. We use the local 
regression approach for cumulating the effects and computing 
global sensitivities. 

Fig. 2 illustrates the steps of the gradient-based SA method 
in detail. In the first step, the experiment is planned and the 
responses are measured, which is common to any SA approach. 
The experiment plan can be made based on possible previous 
knowledge about the system, but usually Monte Carlo is 
preferred, if no other analysis is already available. Let N denote 
the number of simulations/measurements performed. 

In the second step, for each point i, i=1,..., N, the subset of 
q closest points is determined for the local regression. Fig. 3 is 
an illustration for a better understanding. In the third step, we 
perform a linear regression on the subspace and compute the 
regression coefficients {β1, …, βK} for each subset i. 

After computing all partial regression coefficients for the 
subsets, one computes the simple and the higher order effects 
of Xi. The simple effect of Xi (Sei) is computed as the mean of 
the absolute partial regression coefficients from the N subsets, 
while the higher order effect (Hei) is their variance, as 
described in (4-5). In the last step, the most important factors 
are determined. Note that higher Sei and Hei means greater 
impact. 

 

Fig. 1. Example of local linear regression for a non-monotonic function 

 
Fig. 2. The steps of the Gradient SA method 
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Table I summarizes a comparison of the SA methods from 
the points of view of the class they are based on, the computed 
sensitivity indices and the execution cost implied. The 
advantages of the proposed method, compared to the state-of-
the-art methods, are that it does not impose a specific 
experiment plan and the required number of system evaluations 
does not increase with the number of factors. 

In Table I: K - no. factors, N - sample size, M - no. Fourier 
coefficients, OM - set of predefined frequencies, ωmax= 
max{ω1,…,ωk}, r- no. elementary effects, Nr-no. search curves, 
and NMC - the sample size of the Monte Carlo simulation, if no 
other experiment plan is available 

In the next section we present a comparison of the 
discussed SA methods on custom test functions, where we 
discuss the accuracy of determining the important factors and 
the execution cost implied by each analysis. 

 

 

Fig. 3. Step 2 of the Gradient SA method 

TABLE I.  COMPARISON BETWEEN SA METHODS 

Class of 

methods 

based on 

Method 

Sensitivity measures 
Execution cost 

 Symbol Significance 

Variance Sobol Si, STi 1st order and N٠(2K+1) 
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FAST Si 
total effect 
sensitivity index 

2٠M٠OM(K)+1 

EFAST Si, STi K٠(2Mωmax+1)/Nr 

OAT Morris µ,σ 

mean and  

standard 

deviation of  

elementary 

effects 

r٠(K+1) 

Entropy 

Simple Hi 
simple effect 

entropy 
NMC 

Pair HTi 
pair effect 

entropy 
NMC 

Local 

regression 
Gradient Sei, Hei 

simple and 

higher order 

effect 

NMC 

 

IV. EVALUATION OF THE SA METHODS ON CUSTOM TEST 

FUNCTIONS 

In order to test the methods’ capability in identifying the set 
of important factors, we tested the methods via simple 
polynomial functions as in (6), which include different types of 
factor effects (main, quadratic and first order interactions), 
while the coefficients βi and βij indicate the importance of 
factor Xi. 

0

1 1

k k k

i i ij i j

i i j i

y x x x  
  

   
 

(6) 

Knowing a-priori the factor-response relationship, one can 
test the methods’ accuracy in determining the important factors 
of the system and highlighting also the execution cost can serve 
as a guideline when selecting the SA method for the study of a 
real system, for which the factor-response relationship is not 
known a-priori. 

Based on the results from [18], we extended the validation 
approach on synthetic functions and also included the proposed 
method in the analysis. Thus, we consider 60 polynomial 
functions as in (6), each with a number of 30 factors. From 
these factors, we selected a set of target (important) factors and 
attributed 90% of the effects to them and distributed the rest of 
the effects to the other, non-important factors. 

In order to reproduce real scenarios, we added random 
noise to the responses and tested the capability of the methods 
to determine the important factors even if the system was 
affected by noise.  

Noise scenarios are common for measurement data, not 
simulation ones. A response may be affected by noise because 
of other factors which have not been considered for the 
analysis. 

For the noise scenarios, we added a random Gaussian noise 
to the response and considered the measure of Signal-to-Noise 
Ratio (SNR) to find the variance of the noise as in (7): 

 

(7) 

where σY
2
 is the variance of the response and σnoise

2
 is the 

variance of the noise. Then, the responses affected by noise can 
be described as: 

 i noise i noise iy y      (8) 

where ηi are normally distributed pseudorandom numbers. 

We consider seven SNR values SNRdB ={25, 20, 15, 10, 5, 
0, -5} dB for the analysis; note that SNR=25 dB has the same 
effect as if no noise was added. 

As a measure of accuracy of the methods performance, we 
define the pass rate, which computes the percentage of factors 
selected a-priori to be important and which can be found also in 
the top five most important factors of a method. The top five is 
also a common number of important factors to which a SA is 
reduced.  

For each polynomial function, we selected 2-4 important 
factors, so it is a satisfactory result if the factor is found in the 
top five most important factors. 

Fig. 4 illustrates a comparison of several SA methods’ 
performance in terms of the accuracy. We compared the 
accuracy of the proposed Gradient SA method to three 
variance-based methods, the Morris OAT and the entropy-
based methods proposed by the authors in [16]. 

Note that the FAST method is capable of determining only 
main effects of factors, so it was tested only for this type of 
factor-response relationships. 

The proposed Gradient SA method gains slightly better 
accuracy than the EFAST variance-based method and the Pair 
entropy-based method and it outperforms the Entropy Simple, 
the Morris and the Sobol methods. 

Another analysis implies increasing the number of factors 
to 50 and test the accuracy of the methods. The results were 
similar as in the case of 30 factors. 

We summarized also the execution cost implied by each 
method for different number of factors in Table II. For most of 
the methods, an increase of the number of factors implies also 
an increase of the number of experiment runs. The advantage 
of the proposed method is emphasized here, as the number of 
necessary experiment runs does not increase with the increase 
of the number of factors. 

The application of different SA methods on test functions 
serves as a starting point in inspecting the compromise 
involved by the high accuracy in determining the important 
factors and the execution cost involved by the analysis.  

The conclusions provide valuable information when 
selecting SA methods for a real system, where we have no 
information about the factor-response relationships. Another 
finding is that the important factors are easier to be determined 
from a lower number of factors. 
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Fig. 4. Accuracy comparison of the SA methods; 30 factors 

TABLE II.  THE EXECUTION COST 

Method 
Execution cost (no. runs) 

30 factors 50 factors 

Sobol 1830 3030 

FAST 23081 87241 

EFAST 1950 3250 

Morris 310 510 

Entropy-based 300 300 

Gradient 300 300 

 

V. EVALUATION OF THE SA METHODS ON THE E-BIKE 

APPLICATION 

The methods are applied on an electronic system, which is 
an E-Bike application described in [19-20]. An E-Bike is a 
regular bicycle with an integrated electric motor to provide 
additional assistance. 

The 15 factors included in the analysis are listed in Table 
III. Note that the factors are of different nature, including 
system architecture properties, component properties, system 
inputs and operating conditions. Two responses were 
considered: the acceleration time (denoted as AccTime) and the 
Efficiency in steady state (denoted as PowerEfficiency). 

In order to validate the proposed Gradient SA method, we 
considered the results of the EFAST method as reference 
(similar as in [16]) and performed a cross-validation of the 
returned important factors. 

The EFAST method is known to have high accuracy, but it 
comes with the disadvantage of a high execution cost, which 
translates into 975 simulations and approximately 112 hours of 
execution time. The reason for the high execution cost is that 
the application uses a direct driven motor with a large 
mechanical time constant. 

The first step for validation was to apply the Gradient 
method on the experimental runs of the EFAST method and to 
compare the top of the most important factors returned by the 
two methods. It is a considerable advantage that the Gradient 
SA method does not impose its own experiment plan and the 
SA can be applied on the results of the EFAST experiment 
plan. As the system contained a number of 15 factors, we 
considered the top three most important factors for both 
responses. 

As a second step, we applied the Gradient method on a 
lower number of simulations and compared the top of returned 
factors to the top of the EFAST method. In this case, for the 

Gradient SA experiment plan we considered a uniform Monte 
Carlo design with 300 runs. The purpose of this analysis was to 
determine if the Gradient SA has comparable accuracy with the 
EFAST method even with a lower number of simulations. 

Note that the Monte Carlo design with 300 runs was chosen 
because this is the common number of simulations performed 
at early stages of IC verification. Moreover, from previous 
Gradient SA analysis on the same system, this was the 
minimum number of simulations for which accurate results 
could be obtained. 

Table IV summarizes the results of the SA analysis for the 
EFAST method (first column) and the Gradient method applied 
on the simulation runs of the EFAST method (second column). 
Note that STi indicates the total sensitivity index of the EFAST 
method. The proposed Gradient method identifies the same 
important factors as the EFAST method, considered as 
reference. 

One subsequent approach was to determine the rate in 
which the top of the most important factors is preserved when 
considering a lower number of simulations. The last column of 
Table IV presents the results. Even with a much lower number 
of simulations, the Gradient SA method determines the same 
important factors. 

TABLE III.  THE FACTORS OF THE E-BIKE APPLICATION 

Components 
Factors Label 

[units] 
Description 

Current Sensor 

GainA [-] 

OffsetA [µV] 

Gain of the sensor amplifier 

Offset voltage of the sensor 

amplifier 

LevelNoise [-] 
Adjustment factor for the level of 

noise floor of the amplifier 

RoLPF [𝛺] 

CoLPF [nF] 

Resistance and capacitance of the 

output Low Pass Filter 

Rshunt [µ𝛺] Shunt resistor 

Angle Sensor 

OffSin [V] 

ASin [-] 

PhiY [°] 

Offset in the sine sensor voltage 

Synchronicity error 

Mechanical misalignment 

Motor 

Rs [𝛺] 

Ls [H] 

Motor resistance 

Motor inductance 

Ke [V/rad/s] BackEMF voltage constant 

Operating 

Conditions 

Wref [rad/s] Speed reference 

HumanInertia 

[kgm2] 
Human moment of inertia 

Inverter InverterSupply [V] Supply of the inverter 

TABLE IV.  TOP MOST IMPORTANT FACTORS: ACCTIME RESPONSE 

EFAST(975 runs) Gradient (975 runs) Gradient (300 runs) 

factor STi factor Hei factor Hei 

Wref 0.629 HumanInertia 0.268 HumanInertia 0.412 

Ke 0.228 Ke 0.107 Ke 0.154 

GainA 0.073 GainA 0.098 GainA 0.149 

 

Note that the rest of the factors (4-15) would appear in the 
top only by chance and their ranking is different from one 
scenario to the other. When deciding upon the important and 
unimportant factors after the SA analysis, one has to inspect 
also the sensitivity indices returned by the method. Usually, a 
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clear boundary can be determined in the sensitivity indices 
values, which in the present case is after the third factor. 

The same approach is applied for the PowerEfficiency 
response. Table V presents the top three most important factors 
with the Gradient method applied on the simulation results of 
the EFAST method’s experiment plan (second column). Note 
that the top of the factors is the same for both methods. 

Then, we apply the Gradient SA approach on a Monte 
Carlo design with 300 runs and the results are illustrated in the 
last column of Table V. The top three most important factors of 
the Gradient method remains the same. 

By applying two SA methods and cross-validating the 
results, we were able to determine the most influential factors 
on the E-Bike’s responses of interest. 

TABLE V.  TOP MOST IMPORTANT FACTORS; POWEREFFICIENCY 

RESPONSE 

EFAST(975 runs) Gradient (975 runs) Gradient (300 runs) 

factor STi factor Hei factor Hei 

Wref 0.777 Wref 0.333 Wref 0.417 

HumanInertia 0.204 HumanInertia 0.159 HumanInertia 0.199 

Ke 0.030 Ke 0.063 Ke 0.067 

VI. CONCLUSIONS 

A novel gradient-based global SA method was introduced 
which relies on the local regression approach. Its performance 
was compared to other SA methods in terms of accuracy of 
determining factor-response relationships and the execution 
cost implied by the analysis. 

A first step was to apply the method on polynomial test 
functions, where the true factor-response relationship was 
known and the accuracy of the methods in identifying those 
relationships was easy to test. At this step, we considered three 
variance-based SA methods from literature, the Morris OAT 
method and the entropy-based methods proposed earlier by the 
authors. The proposed Gradient SA had better results than the 
well-known EFAST variance-based SA method, with the 
advantage of a lower execution cost. Moreover, it had 
comparable results to the earlier proposed entropy SA methods. 

A second step was to apply the method on an E-bike 
application. For this analysis, we considered the results of the 
well-known EFAST method as reference because of its high 
accuracy proved also on the polynomial test functions. As in 
this case we did not know the true set of factors impacting the 
response, we compared the rankings of the factors returned by 
the EFAST and Gradient SA methods. 

Taking advantage of the fact the Gradient SA method does 
not impose a specific experiment plan, we applied it also on the 
experiment results of the EFAST method. The conclusion was 
that the top three most important factors was the same for both 
methods and responses. 

A subsequent analysis was to consider a uniform Monte 
Carlo design with a much lower number of runs and apply the 
Gradient SA method on it. Even with three times less number 
of runs, compared to the EFAST method, the Gradient SA 

method succeeded in identifying the same important factors as 
the EFAST method. 
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