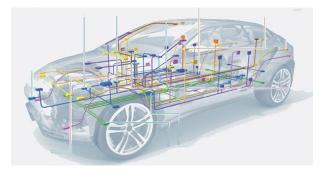
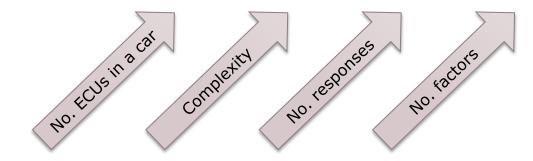
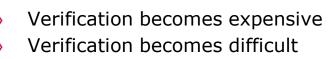
A Gradient-based Sensitivity Analysis Method for Complex Systems

Ingrid Kovacs, Alexandra Iosub, Marina Țopa, Andi Buzo, Georg Pelz

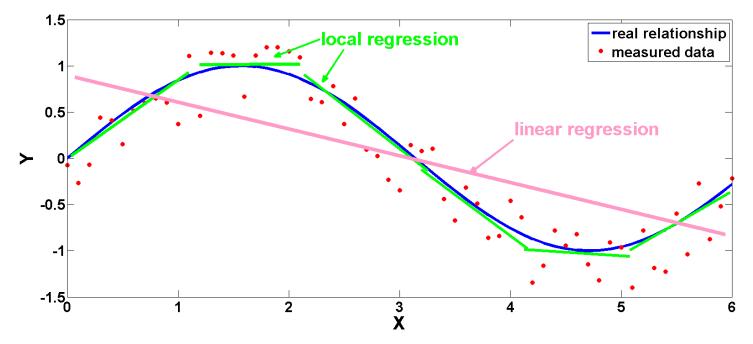

Cluj-Napoca



1. Motivation


Technical field: Verification

At different verification stages one must account for:


- > Input stimuli
- Process variations
- Operating conditions
- > Design parameters
- > ...but, only a few a factors have impact on the response
- > Purpose: appoint the variation of a response to the factors
- > Benefits of sensitivity analysis (SA):
- > Reduction of the verification space (lower costs)
- > Failure/effect discovery
- > Increased understanding of the product or the system

2. Proposed SA method

Principle:

- > The response-factors function is a hyper-surface in the multidimensional space, which for a local small region of the factor space can be approximated with a plane
- > The plane will be tangent to the surface and its orientation is given by the gradient of the surface in that region
- > The orientation of the gradient itself indicates the factors that cause variation in the response

- > Validation on an electronic system, which is an E-Bike application with 15 factors
- > Measured responses: Acceleration time (*AccTime*), Torque Ripple (*TorqueRipple*)
- > Approach for validation of the proposed methods on a real system:
 - 1. Take a state-of-the-art method as true reference of input-output sensitivities: (EFAST method)
 - 2. Apply the proposed SA method on the simulation results of the EFAST method's experimental setup
 - 3. If possible, prove that the proposed method has the same accuracy even for a lower number of simulations

EFAST(975 runs)		Gradient (975 runs)		Gradient (300 runs)	
factor	S _{Ti}	factor	He _i	factor	He _i
Wref	0.629	HumanInertia	0.268	HumanInertia	0.412
Ке	0.228	Ке	0.107	Ке	0.154
GainA	0.073	GainA	0.098	GainA	0.149

Table: Top of most important factors; AccTime response

4. Conclusions

Advantages of the proposed gradient-based SA methods:

- Better accuracy: Proved compared to the EFAST state-of-the-art method
- Less tests required: similar accuracy as EFAST method even with much lower simulations
- More factors does not mean more tests
- No experiment plan imposed: the simulation results of the EFAST method were re-used for the gradient-based method

UNIUNEA EUROPEANĂ

Instrumente Structurale 2014-2020

This work was co-funded by the European Regional Development Fund through the Operational Program "Competitiveness" POC-A1.2.3-G-2015, project ID P_40_437, SMIS code 105742, contract 19/01.09.2016